Comparative assessment of conventional and IoT(Internet of Things) based protected houses for *Cucumis sativus*(salad cucumber) under local conditions

AG/AT/2014/3770 DEPARTMENT OF AGRICULTURAL ENGINEERING FACULTY OF AGRICULTURE UNIVERSITY OF RUHUNA

Crop management

Condition		Germination			Vegetative		Reproductive	
No. of days		8 days			8-28		28-120	
Relative humidity		0-4days	4-8 days					
	6AM-6PM	80-90%			65%-70%		55-65%	
	5AM-6AM	50%	50%		45%-5	45%-50%		50-55%
Temperature		9PM-6AM		6AM-9AM		9AM-5PM		5PM-9PM
		15 ºC		20 ºC		25 ºC		20 ⁰ C
рН		5.8-6.3						
Substrate moisture		550%-600%						
DOA,2018							2	

3. One protected house was maintained according existing commercial scale management practices

Data Collection

Nursery Stage

Germination %

Time taken to 80% germination

Seedling height

Seedling base thickness

Chlorophyll content of 1th leaf

Dry weight

Shoot and root length

Vegetative stage

Vine length

Inter nodal length

Base thickness Time taken to emerge 5th true leaf

Chlorophyll content of 5th leaf

Time taken to emerge 14th leaf

Chlorophyll of 14th leaf Number of leaves per vine per week

Reproductive phase

Time taken to 1st flowering

Time taken to 1st flower appearance

Time taken to 1st harvest

Yield per vine per week

Number of aborted fruits per vine

Type of disease

Severity of each disease

Pests type and count

Data analysis

- Data was analyzed using
 - Pooled t test
 - > Descriptive statitics like charts and graphs

Results and discussion

Objective 01

• Nursery stage - Total height

- The different apostrophe denotes significant difference between 2
 treatments according to pooled t test
- Error bars show the standard error

Less height in a seedling is a prediction of less vine length in cucurbits (Grange and Hand, 2017).

• Root height

The same apostrophe denotes no any significant difference between two treatments in pooled t test

Root height

• Shoot height

Less shoot height in a seedling is a prediction of less vine length in cucurbits (Hat and Prueger, 2015).

The different apostrophe denotes significant difference between two treatments according to pooled t test

Shoot height

Hypocotyledon height

Less hypoctyledon height result a plant with more stability (Hat and Prueger, 2015)

• Epicotyledon height

Low epicotyledon length result a less intermodal length in grown up plant (Smit and Skinner, 2002).

• Dry weight

Increased dry weight

high photosynthesis rate high net accumulation rate Low respiration (Smit and Skinner, 2002).

• Leaf area

• Germination percentage

Early germination result a lengthy harvesting cycle in cucurbits. (Khanna and Zilberman, 1997)

Vegetative phase

• Vine length

Increased vine length

- management practices become hard
- low energy for reproductive phase
- High energy consumption in vegetative phase result
- Reduction of length of harvesting cycle
 (Barker and Mill, 2017)

15

• Internodal length

Increased internodal length \longrightarrow Sign of stress undergone by plant

(Prakash, Sajeena and Lakshminarayana, 2017)

• Base thickness

• Time taken to emerge 5th true leaf and 14th leaf

Early leaf emergence

indicator of high temperature Reduce harvesting period (Mortensen, 2000)

• Chlorophyll content of 5th true leaf and 14th leaf

• Number of leaves per unit length of vine

More number of leaves per unit length of vine

more nodes per unit length more fruits per unit length (Mortensen, 2000)

Reproductive phase

• Time taken to 1st fruit setting, 1st flowering and 1st harvest

Early flower appearance & early first flower appearance sign of stress

Early first harvest

sign of a lengthy harvesting cycle (Mortensen, 2000)

1st flowering

• Aborted fruits per vine

More aborted fruits

sign of inadequate microclimatic conditions during reproductive phase

(Shamshiri and Ismail, 2013)

• Disease severity

Downy mildew

• Yield per vine

Objective 02

Relative humidity

Vegetative phase(8-28 days)

• Temperature

Conclusion

- The growth parameters showed a positive effect on yield increment in IoT based protected house when compared with the conventional protected house.
- There was a average 41.6% yield increment of in IoT protected house that that of conventional protected house.
- The microclimatic conditions were able to maintain in a range which has a positive impact on yield and growth parameters of Salad cucumber.
- The IoT based protected house is economically feasible.